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Abstract

In this paper we show how one can �nd accurate analytical approxi-
mations to a dynamic investment strategy in the presence of transaction
costs. In comparison with previous contributions, our approach has the
signi�cant advantage of allowing one to analytically calculate the quan-
tiles of the �nal wealth distribution function. As the results of numerical
example based on �nancial data show, our approximation procedure gives
a fast and extremely accurate approximation to the solution. Extending
on the result we show how the optimal rebalancing frequency and the op-
timal asset mix can be determined given some �xed amount of transaction
cost charged for each transaction.

Keywords: dynamic portfolio selection, transaction costs, analytical
approximation

1 Introduction

Since the now legendary paper by Markowitz (1952) there has been an explosion
of papers on the subject of portfolio selection. Although the methodological
advances had a tremendous e¤ect on the academic community the impacts of the
modelling approach were far less convincing within the �nancial industry. The
main reasons for the lack of applicability can be attributed to the gap between
theoretical model simplicity and the inherent real world complexity. Due to
the above considerations, there remains signi�cant room for the improvement
of theoretical models on the topic of portfolio selection.
There are many ways to categorise investment strategies, one of the most

common being the classi�cation with respect to the amount of active trading
each class of investment strategies imposes. Within static investment strategies
an allocation between di¤erent asset classes is made only once; namely at the
beginning of the investment period, whereas with dynamic strategies rebalancing
or active trading is performed throughout the period.
One of the classes of dynamic investment strategies that has attracted enor-

mous academic interest over the past decade is continuously rebalanced constant
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mix strategies. Although very convenient from a theoretical viewpoint (Merton
1990), the applicability of constant mix investment strategies remains seriously
in question. If the lack of exploration of favorable market dynamics is a seri-
ous drawback of static strategies then transaction costs must be the undoing
of constant mix strategies. Since following market dynamics obviously comes
at a price, one is undoubtedly confronted with the question of how to success-
fully incorporate both the negative impacts of transaction costs and explore the
bene�ts of following the market dynamics by rebalancing portfolio allocations
between di¤erent asset types.
In the �nancial literature there have been numerous attempts to account

for the presence of transaction costs: Constantinides (1979) was one of the
�rst to show that an investor facing transaction costs rebalances his portfolio
less frequently than in a frictionless economy; Gennotte and Jung (1994) nu-
merically solved the problem of an agent with utility de�ned preferences over
terminal wealth and proportional transaction costs; Boyle et al. (1997) extended
their approach by developing analytical expressions in the case the investor has
a power utility function and the risky asset follows a multiplicative binomial
process; Lowenstein (2000) examined the portfolio trading problem of an in-
vestor who faces transaction costs and short sales constraints in a continuous
time economy; Rowland(1999) addressed the question of transaction costs and
international portfolio diversi�cation; while Marquering et al. (1999) examined
the e¤ect of transaction costs and habit persistence in explaining the cross-
sectional variation in portfolio returns.
Although theoretical advances in terms of accounting for transaction costs

have been made, it still proves extremely hard to �nd analytical solutions to
realistic models with transaction costs.
One problem we confront when including transaction costs is that even under

the simplest set of assumptions the models prove to be too complex to solve in
an analytical form. Take as an example a simple periodically rebalanced two-
asset model without any transaction costs, where one of the assets is risk-free
and the other risky and follows a log-normal law. The end-period wealth is
in this case a sum of log-normal dependent variables for which no analytical
distribution function exists. The introduction of transaction costs inherently
adds to the complexity of the problem.
In this Section I show how one can �nd accurate analytical approximations

for a dynamic (constant mix)1 investment strategy in the presence of transaction
costs. Within my approach I account for transaction costs, which are assumed to
be proportional to the amount of risky assets bought or sold. The assumption of
proportional transaction costs is similar to most of the work done on the subject
(Constantinides, (1986); Davis and Norman, (1990); Magill and Constantinides,
(1976); Uppal, (1993).
In deriving the proposed approximation procedure I rely on the previous

work by Dhaene et al. (2002a;b), where the authors derive convex bounds for
the distribution functions of otherwise inexpressible random variables or sums

1Dynamic rebalancing does not automatically imply continous rebalancing.
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of random variables with no analytical description. In much the same way, I use
the conditioning Taylor approach where a sum of log-normal dependent random
variables is approximated by a conditional sum with the conditioning random
variable set equal to the �rst-order Taylor expansion of the original sum.
Within this framework I explicitly work out a general example from the

area of savings. I solve a problem of an investor who at time zero makes an
investment that is being periodically rebalanced (on a yearly basis) according
to a previously determined investment strategy (characterised by allocations
between di¤erent asset classes) for a period of n years. In determining the
optimal investment mix, I search for an asset mix that maximises the amount
of (1� p) % guaranteed terminal wealth. Hence, my optimisation criteria is set
equal to VaR (p%).
This approach of modelling an investor�s preferences via VaR or more gen-

erally by a class of distortion functions is based on the concept introduced by
Yaari (1987) and is in contrast to most of the �nancial literature on the subject;
it is usual in �nance to model an investor�s preferences with utility functions.
The main di¤erence between the two approaches lies in the way they model an
investor�s preferences; in Yaari�s theory, investors are assumed to take di¤erent
positions on the probabilities of the outcome, (i.e. a conservative investor places
more weight or a higher probability on the negative outcomes than the neutral
probability distribution or physical measure suggests, whereas an aggressive in-
vestor overestimates the probabilities of positive or above-average outcomes;
since in a way they both distort the neutral probability distribution this leads
to the name distorted functions).
The organisation of this Section is as follows. In the following section, I

introduce the basic properties of my model dynamics along with an investor�s
preferences and optimisation criteria. Section 5 explains the solution method-
ology. In Section 6 I explicitly work out a case of a single investment made at
the beginning of the investment horizon. Numerical illustrations of the models
considered are presented in Section 7, while in Section 8 I conclude.

2 Risk measures and comonotonicity

2.1 Risk measures

In this section I present some of the most important risk measures used in
actuarial science. In simple terms, a risk measure is a functional that assigns a
value to the distribution function of a random variable.
Perhaps the most important and widely used risk measure is Value at Risk

or VaR. For a given random variable X the p-quantile risk measure (VaR) is
de�ned by

Qp [X] = inf fx 2 R j FX(x) � pg ; p 2 (0; 1) ; (1)

where FX(x) = Pr [X � x]. A related risk measure is denoted by Q+p [X] and is
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de�ned by

Q+p [X] = sup fx 2 R j FX(x) � pg ; p 2 (0; 1) : (2)

Observe that only values of p corresponding to a horizontal segment of FX lead
to di¤erent values of Qp [X] and Q+p [X]. Thus when FX is strictly increasing,
both risk measures will coincide for all values of p. In this case, one can also
de�ne the (1� p)-th quantiles by

Q1�p [X] = sup
�
x 2 R j FX(x) � p

	
; p 2 (0; 1) ; (3)

where FX(x) = 1� FX(x).
Another important risk measure often used is Tail Value-at-risk, denoted

TVaR and de�ned as

TV aRp =
1

1� p

Z 1

p

Qq [X] � dq; p 2 (0; 1) ; (4)

Note that the TVaR can be interpreted as the expected value of quantiles from
some p on.
Two risk measures closely related to TVaR are Conditional Tail Expectation

and Expected Shortfall. The Conditional Tail Expectation denoted by (CTE)
is de�ned as

CTEp = E [XjX > Qp [X]] ; p 2 (0; 1) : (5)

The Expected Shortfall at level p denoted by (ESFp) is de�ned by

ESFp = E [(X �Qp [X])+] ; p 2 (0; 1) : (6)

For more about the relationship between di¤erent risk measures see Dhaene et
al. (2003).

2.2 Comonotonicity, comonotonic sets and comonotonic
random vectors.

In this section I introduce the concepts of comonotonicity, comonotonic sets and
comonotonic random vectors. First I state the de�nition of the comonotonic set
(see e.g. Dhaene et al. (2003)).
Let �!x ;�!y denote two random vectors in Rn and let �!x � �!y denote compo-

nentwise order which is de�ned by xi � yi for all 1 � i � n:

De�nition 1 The set A � Rn is said to be comonotonic if for any �!x ;�!y �A the
following relationship holds �!x � �!y or �!y � �!x .

Observe that from the de�nition it follows that any comonotonic set is si-
multaneously non-decreasing in each component. Thus a comonotonic set is a
thin set, it cannot contain subsets with a dimension bigger than 1. Moreover,
any subset of a comonotonic set is also comonotonic.
By having de�ned a comonotonic set I can proceed to de�ne a comonotonic

vector.

4



De�nition 2 A random vector Y = (Y1; Y2; � � � ; Yn) is said to be comonotonic
if

(Y1; Y2; � � � ; Yn)
d
= (F�1Y1 (U); F

�1
Y2
(U); � � � ; F�1Yn (U)); (7)

where U is a random variable which is uniformly distributed on the unit interval

and where the notation d
= stands for �equality in distribution�.

For any random vector X = (X1; X2; � � � ; Xn), I will call its comonotonic
counterpart any random vector with the same marginal distributions and with
the comonotonic dependency structure. The comonotonic counterpart of X =
(X1; X2; � � � ; Xn) will be denoted by Xc = (Xc

1 ; X
c
2 ; � � � ; Xc

n): Hence for any
random vector X = (X1; X2; � � � ; Xn), one has

(Xc
1 ; X

c
2 ; � � � ; Xc

n)
d
= (F�1X1

(U); F�1X2
(U); � � � ; F�1Xn

(U)): (8)

It can be proven that a random vector is comonotonic if and only if all its
marginals are non-decreasing functions (or all are non-increasing functions) of
the same random variable.

3 Distortion functions

In this Section I explain the di¤erence between utility functions and distortion
functions as �rst introduced by Yaari in his dual theory of choice under risk
(see Yaari (1987) or Wang & Young (1998)). In plain terms, utility functions
represent an investor�s preferences by assigning di¤erent weights to the outcomes
of random variable (such as wealth), whereas in the distortion function context
preferences are described by a distortion function which transforms the physical
measure (or probability measure).
The distinction between both concepts can most e¤ectively be presented by

comparing the decision principles within both settings. More formally

De�nition 3 A utility function U is a non-decreasing real-valued function on
R.

Within the utility theory the optimisation criterion is equal to the expected
value of transformed random variable U(X)Z 1

�1
U(x)dF (x): (9)

De�nition 4 A distortion function g is a non-decreasing function g : [0; 1] !
[0; 1] with g(0) = 0 and g(1) = 1.

In Yaari�s dual theory of risk a decision principle is set equal to

�
Z 0

�1

�
1� g(F (x))

�
dx+

Z 1

0

g(F (x))dx; (10)
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with F (x) equal to

F (x) = 1� F (x): (11)

Observe that although g(F (x) takes values on the interval [0; 1] it cannot be
regarded as a "new" probability measure (or distorted probability measure);
namely g(F (x) will not necessarily be right continuous.
For the connection between risk measures and the distortion function, see

Dhaene et al. (2003).

4 The model

I assume an investor with distortion function preferences de�ned over terminal
wealth and a �nite investment horizon of n years (for the purpose of numer-
ical illustration n=20 is chosen). In considering investment strategies, I take
the class of constant mix dynamically rebalanced strategies with inter-temporal
rebalancing done on a periodic basis. I explicitly account for transaction costs
with an additional term proportional to the amount of risky assets bought or
sold. The optimality of an investment strategy is de�ned in terms of the maximi-
sation of the VaR(p%) of the distribution function of terminal wealth. Although
this approach of modelling an investor�s preferences by means of VaR deviates
from the standard procedure in the area of �nance, this does not limit the ap-
plicability of my approach; my methodology can easily be extended to include
utility de�ned preferences.

4.1 Portfolio dynamics of semi-static investment strate-
gies under transaction costs

Consider a market of m risky and one risk-free security. The characteristics of
the market are described by a joint probability density function f de�ned on
the space (0;1)m � Z+

f(
�!
S ; k) = f (S1(k); S2(k); ::Sm(k)) ;

with
�!
S denoting the values (prices) of one money unit investments in m risky

securities in k-th period.2 The distribution of log returns on individual securities
is assumed to be unimodal and symmetrical and is assumed to belong to the
class of stable distributions, while the log-return on well-diversi�ed portfolios is
assumed to be normally distributed (this will be the case if we consider returns of
market index or a well-diversi�ed benchmark over longer investment horizons).

2The returns from a single asset (logs of gross returns) are assumed to be i.i.d, so that the
distribution of returns (or prices of securities) depends only on the length of the investment
horizon.
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Accordingly, a constant mix investment strategy is characterised by an allo-
cation vector �!� , between risky and risk-free assets, with �i (i from 1 to m) de-
noting a percentage of wealth invested in risky asset i and �0(t) = 1�

Pm
i=1 �i(t)

invested in the risk-free asset. In contrast to risky securities, the value of a
money unit investment in the risk-free asset is deterministic and can be ex-
pressed as

Srf (t) = e
�rf �t;

where �rf stands for the drift of the risk-free asset.
In the case of a periodically rebalanced constant mix strategy (with alloca-

tions done on a periodic basis), the end-period investment value is equal to

Vn = V0

nY
j=1

 
�0 � Srf (j) +

mX
i=1

�i � Si (j)
!
; (12)

where n is the number of times the investor readjusts his investment mix towards
the required allocation strategy �!� and Si (j) represents the value of a one-unit
investment in the risky security i in the j-th period.
In order to adequately capture all aspects of rebalancing, the equation must

be modi�ed to allow for the presence of transaction costs. I model the presence
of transaction costs by an additional factor Ti(�i; Ci; Si), which gives the net
value of i-th security after the deduction of transaction costs

Vn = V0

nY
j=1

 
�0 � Srf +

mX
i=1

Ti(�i; Ci; Si) � �i � Si (j)
!
: (13)

Here Ti(�i; Ci; Si) is assumed to depend on the percentage of investment
placed in the i-th risky asset �i (for example, if �i is equal to 1 there are no
transaction costs since no rebalancing is required), the value of i-th risky asset
Si (transaction costs will depend on the end-period value of i-th risky asset and
along with it on that period�s realised return) and the amount of transaction
costs charged for that security. Generalising the result (13) to the case of multi-
period investment strategies with yearly investment amounts �i and rebalancing
done on a periodic basis, the terminal wealth is equal to

Vn =
nX
k=1

�k

nY
j=k

 
�0 � Srf +

mX
i=1

Ti(�i; Ci; Si) � �i � Si (j)
!
: (14)

A special case of interest is where there are only two assets available for
investment, one risky and one risk-free. In this case, equation (14) simpli�es to

Vn =
nX
k=1

�k

nY
j=k

(�0 � Srf + Ta(1� �0; Ca;Sa) � (1� �0) � Sa (j) ; (15)

where Srf represents the value of the risk-free asset, and Sa (j) the value of a
one-unit investment in the risky security in the j-th period. Note that where
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the risky investment is in a market index or a well-diversi�ed portfolio then Sa
can be assumed to be log-normally distributed.

4.2 Investor preferences and optimisation criterion

In modelling investor preferences I assume that they can be modelled within
the class of distortion functions. The class of distortion functions was intro-
duced by Yaari (1987) and can be considered as an alternative approach to the
concept of utility theory. While in utility theory one assumes that investors
assign utility levels to each outcome of the random variable (such as portfolio
return), in Yaari�s dual theory of risk an investor�s preferences are described by
means of distortion functions or �transformation� functions, which change the
distribution of probability mass on the set of outcomes. In much the same way
as in utility theory where one maximises the expected value of a utility trans-
formed (assigned) random variable, under Yaari�s dual theory of risk optimality
is achieved when the value of distorted distribution function is maximised

max
~�
�(Vn(~�)):

Here � represents the risk measure associated with the distortion function
and Vn the accumulated wealth (or terminal wealth) at the end of n periods.
As mentioned at the beginning, I use Value-at-Risk (VaR) as the optimisation
criterion. A similar choice of optimisation criterion is found in Dhaene et al.
(2004b).
It can be shown that maximising the VaR of the terminal wealth distribu-

tion function at a given probability level p yields an investment strategy that
maximises the minimal amount of Vn achieved with a probability of at least
1� p. Thus, the optimisation criterion reads

max
~�
(F�1Vn(~�)(p)); (16)

with F�1Vn(~�)(p) denoting the inverse (or quantile) of the terminal wealth dis-
tribution function at probability p. Note that the problem of maximising a
distortion risk measure or a quantile as the most distinct representative of this
class of distortion risk measures is tightly linked to the problem of determin-
ing the distribution function of terminal wealth. One can see from equation
(14) that even in a very simple model with only two assets and without trans-
action costs the terminal wealth is a sum of log-normally distributed random
variables and hence the distribution function is impossible to determine ana-
lytically. Therefore, one has to rely on a Monte Carlo simulation which can
be time-consuming, especially if one is interested in extreme quantiles of the
distribution function. To make matters worse, when choosing among possible
investment strategies due to the numerous securities available there is virtually
an in�nite number of possibilities to consider.
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5 Solution methodology

5.1 Reducing the multidimensionality

One of the biggest obstacles to solving problems of the form (14) is the inherent
multidimensionality that is encountered. As mentioned, due to the numerous
number of assets available there is practically an in�nite number of possible
combinations one has to consider when analysing the problem. Therefore, it is
very convenient if the multidimensionality of the problem can be reduced by
proving that the solution to the problem can be found in a smaller subset then
the original set. More speci�cally, I prove that the optimal investment strategy
lies on the Capital Market Line (CML).

Theorem 5 The solution to the problem (16) when only considering well-diversi�ed
portfolio strategies (with normal log-returns) is maximised by selecting an invest-
ment strategy from the CML.

Before proving the stated result, I recall a helpful lemma.

Lemma 6 Let
�!
Y and

�!
Z be two random vectors with non-negative indepen-

dent components that are stochastically ordered (i.e. meaning that for each i
Yi �st Zi). Then for any non negative vector �!a ; with non-negative components
independent of

�!
Y and

�!
Z also �!� � �!Y and �!� � �!Z are stochastically ordered.

Moreover,
nY
j=1

Yi and
nY
j=1

Zi are also stochastically ordered.

Proof. De�ne
�!
Y �;

�!
Z � to be random vectors of quantiles of marginals of Yi,

Zi so that
�!
Y � can be written as a

�!
Y � = (F�1Y1 (U1); :::; F

�1
Yn
(Un)) and

�!
Z � =

(F�1Z1 (U1); :::; F
�1
Zn
(Un)), where Ui are uniformly (0; 1) distributed random vari-

ables. Obviously
�!
Y �has the same marginals as

�!
Y and

�!
Z �has the same mar-

ginals as
�!
Z . It is not hard to see that also

�!� � �!Y d
= �!� � �!Y �

and
nY
j=1

Yi
d
=

nY
j=1

Y �i ;

while the same holds for r.v.
�!
Z . Clearly

�!� � �!Y � �st �!� �
�!
Z �;

since for any outcome (U1; :::Un),
�!� ��!Y �(U1; :::Un) is smaller than

�!� ��!Z �(U1; :::Un).
Obviously this su¢ ces since the Ui�s a.s. determine the set of all outcomes. In
a similar way, one can also prove that

nY
j=1

Yi �st
nY
j=1

Zi:
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I can now proceed to proving the stated result of the theorem
Proof. First note that it su¢ ces to prove the stochastic dominance of CML
investment strategies. Namely for any type of optimisation criteria the following
relationship holds

X �st Y :) �[X] � �[Y ]; (17)

where � denotes the optimisation criterion (e.g. expected utility function) de-
�ned over non-negative random variables X;Y (e.g. terminal wealth). In simple
terms if one can prove that the distribution function of end wealth under CML
investment strategy stochastically dominates all other distribution functions aris-
ing from other investment strategies (ones not on the CML) this allows one to
restrict himself to CML portfolios.
Recall that CML is de�ned as a subset F of the half-plane R2+ = f(�; �)j� 2

R; � � 0g which corresponds to all mean-variance e¢ cient portfolios. More
precisely, all CML portfolios have the following property

min
~�
�(~�) subject to �(~�) = �; (18)

which can in an alternative form be rewritten as

max
~�
�(~�) subject to �(~�) = �: (19)

Observe that each of the yearly log-returns Yi can be written as

Yi(~�) = �(~�) + �(~�) � ��1(Ui);

where Ui are independent uniform random variables and ��1 is the inverse
of standardised normal c.d.f. Thus, the yearly return from a CML investment
strategy stochastically dominates the yearly returns of other investment strate-
gies

Yi(~�)
~��CML

�
st
Yi(~�):

Since end-period wealth is simply just a sum of the products of exponents of
yearly returns by lemma 6 the stochastic dominance of the end-wealth of invest-
ment strategies from the CML follows.

5.2 Approximating procedure

Consider a sum of log-normal variables

S =
nX
i=1

�i � eZ(i); (20)

with �i positive constants and
�!
Z = (Z(1); Z(2);���; Z(n)) a random vector with

drift �!� and variance covariance matrix �. One can conveniently assume that �i
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represents the amount invested i-th year and Z(i) the investment return over
horizon of n � i years long (from year i to year n). Thus S can be taken
to represent the accumulated value (or future value) of a series of periodic
investments.
In general (if at least two �i are non-zero) the distribution function of S

cannot be determined analytically since (20) is a sum of dependent lognormal
variables. One way of approaching this problem is to use a Taylor series ex-
pansion up to the �rst order which allows the distribution function of S to be
written in an analytically tractable form. Although convenient, a �rst-order
Taylor approximation will only work well if the variances of Z(i) are relatively
small, which will rarely be the case. Due to the severe limitations of a �rst-
order Taylor approximation, one seeks for a method that is more robust and
more widely applicable
In confronting this problem, Dhaene et al. (2002a;b) have shown that by

using the technique of conditioning on the �rst-order Taylor approximation one
gets an approximating sequence that is at the same time analytically tractable
as well as highly accurate. Following their methodology, it can be shown that
any sum of the form (20) can be approximated by a sequence:

E [S j �] =
nX
i=1

�i � E
h
eZ(i) j �

i
; (21)

with E denoting the expectation operator, and the conditioning variable3 �
de�ned as

� =

nX
i=1

�i � e�i � Z(i); (22)

with �i denoting the drift rate or the expected value of Z(i). Observe that
expression (22) is in fact a �rst-order Taylor series expression of the original sum
around expected values of Z(i) (i.e if one derives a �rst-order approximation
of (21) around the expected values of Z(i); the resulting expression is up to
a constant equal to �) so that the conditioning is done with respect to the
approximated value of S derived by the �rst-order Taylor series expansion.
In comparing both methods (Taylor and conditioning), one may ask why is

it more suitable and accurate to use the latter. Clearly the �rst-order Taylor
approximation su¤ers from a severe problem of misspeci�cation of the terms
appearing in S; where a sum of log-normally distributed random variables is
replaced by the sum of normally distributed variables (i.e each log-normal term
is replaced by its normally distributed counterpart). In comparison, the condi-
tioning technique gives both an accurate description of the stochastic process
by accurately capturing the statistics of the return vector with the choice of the
conditioning random variable � (i.e note that the set of events or possible real-
isations of the return vector perfectly determines the set of all outcomes of S)
and at the same avoids the problem of misspeci�cation of the terms involved in

3For more on choosing the appropriate conditioning random variable, see Vandu¤el et al.
(2004) and Ahµcan (2005a;b)
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S, with each term in the sum being replaced (approximated) by its counterpart
that is again log-normally distributed. As will soon be shown, besides being sig-
ni�cantly more accurate the conditioning approximating procedure provides an
analytic formulation of the quantiles of the approximating distribution function.
By taking into account the functional form of � and considering that the

characteristics of the returns Z(i) depend on the investment strategy �, (21)
can be written out as a:

E [S j �] =
nX
i=0

�i e
(n�i) �(�)+ 1

2 (1�r
2
i (�)) (n�i) �

2(�)+ri(�)
p
n�i �(�) ��1(U);

(23)
with U a standard Uniform random variable on (0; 1) and ri (�) given by

ri (�) =

Pn
j=i+1

Pj�1
k=0 �k e

k �(�)

p
n� i

rPn
j=1

�Pj�1
k=0 �k e

k �(�)
�2 : (24)

Note that the correlation coe¢ cients ri (�) are non-negative, implying that
the sum in (23) is strictly increasing in ��1(U). It thus follows directly that the
quantiles of the distribution function of the approximating sequence are given
by

Q1�p(E [S j �]) =
nX
i=0

�i e
(n�i) �(�)+ 1

2 (1�r
2
i (�)) (n�i) �

2(�)�ri(�)
p
n�i �(�) ��1(p);

(25)
with Q1�p denoting the quantile of the distribution function of E [S j �] :

6 Applications

6.1 The case of a single investment

Consider a simple case where a single investment of 1 unit is made at the
beginning of the investment period (i.e at time 0). For the purpose of the
numerical evaluation I take the length of the investment horizon to be equal to
20 years, whereby rebalancing is done periodically at the beginning of each year.
As in subsection 4.1, I introduce transaction costs that are, as before, taken into
account by the additional factor Ti(�i; Ci;Si). Under this set of assumptions the
distribution function of terminal wealth is equal to (13), with V0 set equal to 1

Vn =
nY
j=1

 
�0 � Srf +

mX
i=1

Ti(�i; Ci;Si) � �i � Si (j)
!
: (26)

As the optimisation criteria (VaR) belongs to the class of distortion risk
measures, I only need to consider investment strategies from the CML (i.e. the
allocations are made between the risk-free account and the market portfolio;
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where I assume the price of the market portfolio is log-normally distributed
Sa (j) = e

Ya(j)). Thus, the end-period portfolio value can be given as

Vn =
nY
j=1

(�0 � Srf + (1� �0) � Sa (j)� �0 � (1� �0) � C � jSa (j)� Srf j) ; (27)

with Sa (j) value (gross return) of a one money unit investment in the market
portfolio in the j-th period and the last term �0 �(1��0)�C �jSa (j)� Srf j repre-
senting the cost of rebalancing. Here C denotes transaction costs expressed as a
percentage of the total amount rebalanced, whereas �0 � (1� �0) � jSa (j)� Srf j
gives the amount that has to be either bought or sold in order to maintain
the desired asset mix. Note that the inclusion of transaction costs inherently
changes the statistical properties of the end-period portfolio value equation.
Namely if transaction costs are excluded then (27) can be written in the form
of a sum:

V �n =
nX
i=1

�
(�0 � Srf )i � ((1� �0))n�i � PSa(n� i

�
; (28)

where the last term PSa(n�i) gives the sum of all possible combinations obtained
by multiplying (n � i) terms from the set (Sa (1) ; :::; Sa (n)): Observe that the
number of terms of PSa(n�i) is equal to n!

(n�i)!�i!and may be very large, especially
if the rebalancing is done quite frequently within the investment horizon (i.e if
n is large). PSa(n� i) takes the simplest form when (n� i) is equal to 1 or n.

PSa(1) = Sa (1) + Sa (2) + ::::+ Sa (n) ; (29)

PSa(n) = Sa (1) � Sa (2) � :::: � Sa (n) : (30)

From equation (28) one can see that the reduced form of terminal wealth
is equal to the sum of dependent log-normally distributed random variables.
Hence, the technique of conditioning Taylor sum could apply if it were not
for transaction costs, which introduce intractable nonlinearity into our model.
Luckily, there is a way to overcome these problems. First observe that trans-
action costs, since C << 1 and �0 � (1 � �0) � 0:25, represent only a small
disturbance to the realised one-period gross return and consequently to the re-
duced form distribution function. Even more importantly, transaction costs are
proportional to the absolute di¤erence between the risky and risk-free value
and therefore the quantiles of the reduced form distribution function are not
�signi�cantly�perturbed by the introduction of transaction costs. Accordingly,
one can assume that the quantiles of the terminal wealth distribution function
(with transaction costs) can be obtained by a simple modi�cation (that takes
into account the transaction costs e¤ect) of the reduced form quantiles. The
procedure of calculating the p-quantile will therefore consist of the calculation
of the p-quantile of reduced form distribution function which will be �corrected�
for the presence of transaction costs.
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In line with this approach, one �rst has to �nd an approximating sequence
for the reduced form equation (28). As mentioned in Subsection 5.2, the quality
of the approximating sequence depends heavily on the choice of conditioning
random variable. Here the conditioning random variable should be chosen that
best re�ects the statistical properties of the sum in (28).
There are two ways to proceed to obtaining the most suitable conditioning

variable. Under the general approach one can use a Taylor-series expansion up
to the �rst order and obtain an approximating procedure for the sum in (28).
Alternatively, an appropriate conditioning variable can be obtained by examin-
ing the mathematical properties of the sum of interest (28). Since expressions
(27), (28) are symmetrical with regard to yearly market prices Sa (j) (a simple
perturbation of any of the two indexes does not change the properties of the
d.f.) the conditioning random variable � should also be symmetrical in yearly
returns Ya (i) to best re�ect the properties of the original sum

� = Ya (1) + Ya (2) + ::::+ Ya (n) : (31)

With this choice of random variable the approximating sequence is equal to

V �n (U) =
nX
i=1

n!

(n� i)! � i! � (�0 � Srf )
i � (1� �0)n�i � (32)

�e(n�i) �(�)� 1
2 r

2
i (�) (n�i) �

2(�)+ri(�)
p
n�i �(�) ��1(U);

with U as before (0; 1) uniform random variable and ri equal to

ri (�) =
ip
n � i

: (33)

In my second step, I need to correct the reduced form approximating proce-
dure to account for the presence of transaction costs. After some calculations
one can show that it makes sense to use the following approximation procedure

Vn(U) = V
�
n (U)� n � �0 � (1� �0) � C �

���e�+� ��1(U) � Srf
��� � V �n�1(U): (34)

Here V �n (U) represents the end wealth without transaction costs (32), while

�0 � (1��0) �C �
���e�+� ��1(U) � Srf

��� �V �n�1(U) gives a �rst-order approximation
of the transaction costs involved. It is straightforward that the quantiles of
V �n (U) can be expressed as

Qp (Vn(U)) = Qp (V
�
n (U))�n��0 �(1��0)�C �

���e�+� ��1(p) � Srf
����Qp �V �n�1(U)� :

(35)

7 Numerical illustration

In this section I present the results of numerical calculations for the model
presented in the previous section. For the purpose of simulation, I �x the
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number of years toN = 20: In explicitly solving the model, I choose the following
set of parameters; drift of the market index �m = 0:07 and standard deviation
�m = 0:16, drift of the risk-free asset �r = 0:014 and transaction costs C = 0:01.
The choice of parameters corresponds to the majority of �nancial literature on
the subject (Campbell (2002), Brennan (1997)).
In Figure 1 I present the results of the numerical simulation where the op-

timisation rule was set equal to the 0.05-quantile (VaR at 5% probability). As
one can see from the �gure, my approximating procedure gives an excellent �t
against the Monte Carlo simulation. The maximum deviation between the ap-
proximating procedure (circles) and the Monte Carlo simulation (solid line) is
negligible (0.5%).
The optimal investment strategy (characterised by an allocation between

risky and risk-free assets, where the second value represents the fraction of
wealth invested in risky assets) obtained by means of an approximating proce-
dure is equal to �app = (52%; 48%), compared to the optimal asset mix obtained
by means of a Monte Carlo �MC = (52:5%; 47:5%). The corresponding end-
period wealths are equal to 13.28 money units in the case of the approximating
sequence and 13.24 in the case of the Monte Carlo simulation.
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Figure 1: The approximated 0.05-quantile of terminal wealth versus the simu-
lated 0.05-quantile of terminal wealth as a function of the risky proportion (with
transaction cost).

In analysing the results one can observe that due to the quality of �t op-
timality is in both cases achieved for the same investment strategy, with the
mismatch between actual value and the value obtained by the approximating
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procedure being highest for those strategies with an equal division between risky
and risk-free assets. This is not at all surprising since the expected transaction
costs are highest in case of such strategies.

8 Final remarks

In this Section I explicitly solved a dynamic portfolio selection problem with
transaction costs. In comparison with previous contributions, my approach has
a signi�cant advantage of allowing one to analytically calculate the quantiles
of the end-period wealth distribution function. As the results of numerical
example based on real life data show, my approximating procedure gives a fast
and extremely accurate approximation of the analysed problem.
Even though my procedure o¤ers a signi�cant step forward in the analysis of

multiperiod portfolio problems within the classical framework, several problems
remain to be answered in the future. The �rst and most obvious problem cur-
rently being worked on is how to generalise these results to the case of periodic
investment strategies with yearly investments in the capital market; money is
invested throughout the investment period in reverse to a single initial invest-
ment. In this case, the distribution function of end-period wealth is no longer
symmetrical with regard to the yearly returns and the approximating sequence
does not have as suitable properties as in the case of a single initial investment.
Another problem is linked to the choice of the distribution function describing
the returns; if rebalancing is done on a more frequent basis than one year, the
choice of lognormally distributed asset prices will prove too limiting and one
needs to describe asset returns in terms of Levy processes. A less serious lim-
itation of my work is that I do not use utility de�ned preferences. These can
be easily included in my model, since the approximating sequence adequately
describes the distribution function of end-period wealth thereby also providing
accurate approximations in the case of utility de�ned preferences.
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